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Optimal planning for optical transport networks

By S. Lanning, D. Mitra, Q. Wang a n d M. Wr ight

Bell Laboratories, Lucent Technologies, 600 Mountain Avenue,
Murray Hill, NJ 07974, USA

In optical transport networks, recent development of new technologies has led to
highly accelerated (`disruptive’) increases in the capacity associated with a given
investment cost. As a result, there have been dramatic decreases in the cost per unit
of transport. We describe a nonlinear mixed-integer planning model that assumes
both the continuous emergence of new systems and a constant-elasticity demand
function. Optimization of the model with respect to price and technology acquisitions
over time suggests that, with high elasticity and steeply dropping technology costs,
a carrier will maximize net present value by frequently deploying new systems. This
conclusion is in sharp contrast to the analogous results for voice networks, where
demand is much less elastic and the rate of technology change is much slower.

Keywords: optical transport networks; network planning;
optimization; economic modelling

1. Introduction

Planning for future network expansion is a complex problem for communications
carriers today. Rapid technology innovations are constantly changing the costs of
network expansion; not only are existing systems decreasing in price every year, but
more advanced systems are introduced at frequent intervals. With a modest increase
in investment costs, the newer systems provide capacity that is orders of magni-
tude larger than in earlier systems, thus dramatically reducing the cost per unit of
capacity. These cost trends create a major trade-o¬ in making network deployment
decisions: rapid deployment of current systems allows a carrier to collect revenue in
the short term, but may rule out future opportunities to exploit cost savings. Two
further challenges in planning are that price reductions lead to nonlinear increases
in demand, and that past, current and future deployment decisions are highly inter-
dependent. All of these connections generate a labyrinth of alternatives that need to
be evaluated to make good planning decisions.

We examine these issues through a model that optimizes net present value over
time for a carrier in long-haul transport networks, where innovations are currently
driven primarily by the development of synchronous optical network (SONET) ring
and wavelength division multiplexing (WDM) technologies. An important element
in our model is its inclusion of the relationship between price and demand. If there is
a highly elastic response of demand to price, the carrier’s best strategy is to reduce
price as technological progress provides larger and more cost-e¬ective systems, in
order to increase revenue. The more elastic demand is, the greater is the increase
in revenue that results from price reductions a¬orded by falling unit costs. These
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revenue opportunities in®uence the carrier’s incentive to invest in more capacity.
Because of these interdependencies, we believe that the carrier’s strategy should not
be based on demand that is speci ed externally, but rather should be a coupled
optimization of prices and capacity acquisition over time. Assuming what we believe
to be reasonable demand elasticity, our conclusion is that carriers will maximize net
present value by frequent network expansion.

This paper is organized as follows. Section 2 discusses current technologies in
optical transport networks, x 3 describes and justi es a constant-elasticity demand
curve, x 4 presents our model, x 5 analyses results and x 6 summarizes conclusions
and discusses directions for future work.

2. Optical ring transport network technologies

Optical transport networks are designed to carry communications tra¯ c between
cities typically separated by hundreds or even thousands of miles. Cities are con-
nected by  bre cables into a ring architecture, and an optical transmission system
is deployed at each city on that ring. Ampli ers and regenerators are needed along
each  bre route connecting adjacent cities, where the equipment spacing depends on
the technology.

Because the signal is transmitted along the  bre in SONET format (Stern & Bala
1999), a connected ring of optical transmission systems is usually called a SONET
ring. There are two major types of SONET rings: unidirectional path-switched rings
(UPSR) and bidirectional line-switched rings (BLSR). With UPSR, transmission sys-
tems are connected by two  bres, one each for clockwise and counterclockwise trans-
missions. With complete redundancy, the ring capacity of a UPSR system should
equal the sum of tra¯ c between all city pairs.

With BLSR, transmission systems are connected by four  bres, two that transmit
along clockwise and counterclockwise directions as with UPSR, and two that serve
as backup. Although a BLSR system is more expensive because it requires more
sophisticated add{drop multiplexers (ADMs) as well as an additional  bre pair, it
can carry more tra¯ c than UPSR by intelligent assignment of tra¯ c on di¬erent
segments of the ring. With the exception of routing, planning processes are the same
for both UPSR and BLSR; hence, for simplicity, discussion in this paper is based on
UPSR.

It was formerly customary to deploy a SONET ADM in each city for each  bre.
ADM systems transform electronic to optical signals, and transmit the signals onto
the  bre; they also intercept optical signals from the  bre and transform them into
electronic form. The capacity of a given ring is determined by the ADM rates de ned
in the SONET standard, with OC-1, the base rate, de ned as 51.84 Mb s¡1. The most
commonly used capacity today is OC-48, which is equivalent to 2.5 Gb s¡1. However,
the adoption of OC-192 (10 Gb s¡1) has begun, and OC-768 (40 Gb s¡1) is on the
horizon.

In recent years, optical transport networks have been revolutionized by the advent
of WDM systems, which allow optical signals to be transmitted on di¬erent wave-
lengths within one  bre. As a result, rather than dedicating a  bre pair to each
individual ADM, multiple ADMs may be attached to one WDM terminal, and sev-
eral WDM terminals at di¬erent sites can be connected by a single  bre pair.
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With WDM, there are dramatic savings in the costs of  bre, ampli ers and regen-
erators, which are a major component of the capital expense. In addition, the amount
of tra¯ c that can be carried on a single  bre pair is no longer restricted by the ADM
transmission rate. Instead, the maximum capacity can reach the product of the ADM
rate and the maximum number of wavelengths accommodated by WDM. For exam-
ple, an ADM-only OC-48 SONET ring can provide at most 2.5 Gb s¡1 on a pair of
 bres, but a SONET ring equipped with a 40-wavelength WDM system can carry
100 Gb s¡1.

3. Estimation of demand

(a) Formulation of the demand function

Realistic planning in an environment of rapid gains in technology depends on an
appropriate representation of the relationship between demand and price. However,
it is not easy to characterize this relationship. Because the communications industry
is experiencing an unprecedented transformation, past experience with the service
market becomes less convincing as an indicator of future demand. The most well-
known example of this di¯ culty is usage of the Internet (Cerf 1998), whose growth
in capacity has led to the creation of many previously unpro table applications, in
turn creating more demand for capacity. The most optimistic extrapolations have
consistently underpredicted the continuing expansion of the World Wide Web, and
there is no indication of any change in this trend.

Similarly, the famous `Moore’s law’, which dominates thinking about the micro-
processor and dynamic random access memory (DRAM) industries, is sometimes
stated for the former as a doubling in speed every 18 months for the same price.
However, what actually happens is not that the same chips are available 18 months
later for half the price, but that di¬erent chips, with twice the speed, are available at
the same price. The availability of more computing speed thus generates not only an
`upgrade’ in available speed, but also new markets, since applications that were for-
merly impractical are enabled by the faster chips. The net e¬ect is that the demand
for chips more than doubles every 18 months, i.e. remains ahead of the growth in
processor speed.

To capture these properties in modelling demand for optical network capacity,
we begin with the concept of elasticity. Let D denote demand and p denote price,
where by assumption p > 0. Consider D as a function of price. The price elasticity
of demand E associated with a time-interval is de ned as the negative ratio of the
relative change in demand and the relative change in price during that interval, i.e.

E = ¡ ¢D=D

¢p=p
; (3.1)

where ¢D denotes the change in demand and ¢p denotes the change in price. In the
(usual) situation when demand increases as price decreases, the value of E de ned
by (3.1) is positive. Rearrangement of (3.1) gives

¢D

D
= ¡ E

±
¢p

p

²
; (3.2)

which reveals the implications of di¬erent ranges for E. If E > 1, it follows from (3.2)
that any relative reduction in price leads to a larger relative increase in demand, i.e. if
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price is reduced by 1% (¢p=p = ¡ 0:01), then demand increases by more than 1%,
i.e. ¢D=D > 0:01. If, on the other hand, E < 1, a price reduction of 1% leads to an
increase in demand of less than 1%.

Taking the limit of (3.1) as the interval of change in price becomes in nitesimal,
we obtain

E = ¡ D0(p=D): (3.3)

Assuming that revenue, denoted by R, is the product of price and demand,
i.e. R = pD, di¬erentiation with respect to p and manipulation of (3.3) give an
expression for the relative change in revenue,

R0

R
= ¡ E ¡ 1

p
; (3.4)

which shows the following.

(i) If E > 1, a reduction in price leads to an increase in revenue|for example, if
E = 1:5 and price is reduced by 2%, revenue increases by 1%.

(ii) If E = 1, revenue is una¬ected by any changes in price.

(iii) If E < 1, a reduction in price leads to a reduction in revenue|for example, if
E = 0:5 and price is reduced by 2%, revenue decreases by 1%.

We formulate a demand function with constant elasticity by assuming that (3.3)
holds with the same value of E for all p and D of interest. Solving the associated
di¬erential equation gives the general form

D = Ap¡E : (3.5)

The scaling constant A is equal to the value of D when p = 1, so that A can be
interpreted as a demand potential. Based on the analysis following (3.4), we assume
that E > 1. It follows from (3.5) that

D2

D1
=

±
p1

p2

²E

; so that E =
ln(D2=D1)

ln(p1=p2)
: (3.6)

In this paper, we use the constant value of elasticity for the entire range of price. We
are aware that there is a considerable body of prior work devoted to the estimation
of elasticity (see, for example, Bass 1980; Greene 1993).

Figure 1 depicts constant-elasticity  ts to historical data for demand, with
log(units) on both axes. (a) In DRAM, price per bit is plotted against available units
from 1965 to 1992 (R. Janow 1999, personal communication). (b) For electricity, price
per unit is plotted against generated electricity from 1926 to 1970 (O’Donnell 1973).

In the DRAM market, a constant elasticity of 1:5  ts the data well. For electricity,
the  t with constant elasticity of 2:2 matches the quality of the  t for DRAM in the
years when the time-series overlap.

Both of these examples illustrate markets in which new applications arise as capac-
ity increases. Rather than devalue the industry, innovations that allow steep drops
in price increase the value of the market because the demand response is highly
elastic (see (i) following equation(3.4)). The demand curve shifts outward with new
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Figure 1. Demand for DRAM and electricity.

applications, each of which has its own product life that can be represented by an `S’-
shaped `Bass curve’ (Bass 1969, 1980). However, their composite is well described by
a constant-elasticity curve, so that (3.5) represents a reasonable functional form for
long-run demand. Because our intent is to model bandwidth capacity, the constant-
elasticity form is both sensible and appropriate; however, our framework is su¯ ciently
general to accommodate other functional forms as needed.

(b) Estimation of demand elasticity

A suitable range of values for E in (3.5) can be estimated directly and indirectly.

(i) Direct measurement

The Optical Network Business Unit of Lucent Technologies estimates (Optical
Network Business Unit, Lucent Technologies 1999, personal communication) that
optical equipment is doubling in capacity for the same dollar cost every year, so that
it is, in e¬ect, possible to o¬er the same capacity for half the price. Furthermore,
tra¯ c (i.e. demand) is forecast to be between two and three times larger each year.
Applying (3.6) with p1=p2 = 2 and D2=D1 = 3 gives E = 1:59; if p1=p2 = 2 and
D2=D1 = 2, equation (3.6) shows that E = 1.

The traditional elasticity estimate for voice tra¯ c is approximately 1:05, and
France Telecom has recently estimated elasticity as 1:337 (Aldebert et al . 1999).

(ii) Derived measure

The derived measure of elasticity is based on the notion that elasticity of demand
is the same for both equipment and service providers if equipment providers have
strong market power. Table 1 shows the values of elasticity for industry-wide demand
for bandwidth capacity in various classes of equipment. There is innovation in several
equipment categories, including transmission (WDM and usable frequency windows
in  bre) and communications software to reduce support costs. Making the corre-
spondence between voice service and digital circuit switch, noting the higher elasticity
for asynchronous transfer mode (ATM) equipment, we infer that the elasticity for
data service is correspondingly higher.
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Table 1. Demand elasticity

equipment estimated elasticity original source

digital circuit switch 1.28 NBI

WAN ATM core switch 2.84 In-Stat, IDC

LAN ATM backbone switch 2.76 Dell’ Oro

(ForeRunner ASX-200BX, small ASX-1000)

WAN ATM edge switch 2.11 In-Stat, IDC

4. Assumptions and the model

Our model is intended to maximize net present value by choosing optimal prices and
technology purchases.

(a) The basic formulation

Suppose that there are N cities, with a set I of indices of (distinct) city pairs, and
that we are interested in time, year 1 through T .

(i) Revenue

As discussed in x 3 a, demand between city pairs is assumed to satisfy (3.5) with
a constant elasticity E so that, for any city pair (i; j) 2 I in period t, demand and
price satisfy

Dijt = Aijtp
¡E
ijt ; (4.1)

where Dijt is demand (measured in OC-1 units) between cities i and j, pijt is the
annual price per OC-1 between cities i and j, and Aijt is the scaling factor relating
them (see equation (3.5)). The total revenue in period t is then given by

Rt =
X

(i;j)2 I

pijtDijt: (4.2)

(ii) Costs

In formulating the cost of operating the network, we ignore investment and
expenses that have few direct e¬ects on ring deployment and pricing decisions, and
we assume that the costs of building conduits and laying  bre cables are sunk. The
two major cost components represented in the model are as follows.

(1) An initial one-time investment cost for the purchase and installation of hard-
ware, such as optical transmission units, WDM terminals and regeneration and
ampli cation equipment.

(2) Recurring maintenance costs for  bre.

The set K is de ned as the set of WDM technologies. For each technology k 2 K,
½ k denotes the time period in which this technology  rst becomes available and µk

denotes the maximum capacity (in OC-1) of a single system in technology k.
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For each technology k and period t, Ikt denotes the acquisition cost of a WDM
system and mkt denotes the per-mile cost of maintaining each  bre route. For each
two- bre UPSR ring of technology k purchased in period t, the investment cost is
NIkt; for each ring operated in period t, the recurring expense is 2Lmkt, where L
denotes the total length of  bre needed to connect all the cities.

The number of WDM systems of technology k bought in period t is denoted by
bkt (`b’ for `bought’), and the number of such systems used is denoted by ukt (`u’ for
`used’). The expense in period t is then

Expenset = N
X

k 2 K

Iktbkt + 2L
X

k 2 K

mktukt: (4.3)

(iii) Net present value

Combining (4.2) and (4.3), the cash ®ow Ct in period t is

Ct = Rt ¡ Expenset: (4.4)

In addition to considering cash ®ow, our model includes a terminal value function
that depends on two parameters: a (perpetual) growth rate in cash ®ows, called g 1 ,
and an integer f satisfying 0 6 f < 1 (see Lanning et al . (2000) for details). Letting
¯ = » + g 1 , where » is the discount rate, terminal value is de ned by

TV =

8
<
:

1 ¡ ¯ f

1 ¡ ¯
CT if ¯ 6= 1;

fCT if ¯ = 1;

(4.5)

where CT is the cash ®ow in the  nal period (see equation (4.4)).
The net present value over periods 1 through T is given by

NPV =
TX

t = 1

Ct »
t + » T + 1 TV; (4.6)

where » denotes the assumed discount rate (with » < 1). The objective of the model
is to maximize NPV (i.e. discounted cash ®ow) as de ned by (4.6).

(iv) Constraints

The following constraints are imposed in each time period.

(1) Total demand between cities i and j cannot exceed the capacity provided by
all available systems: X

i;j 2 I
Dijt 6

X

k 2 K

µkukt:

(2) The number of systems used cannot exceed the number used in the previous
time period plus the number bought in the current period:

ukt 6 bkt + uk;t¡1:
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In e¬ect, this constraint states that, once a system has been `retired’, i.e. has
ceased to be used, it cannot be used later. In addition, the number of systems
used in period 1 must be equal to the number bought in that period, so that
uk1 = bk1 for all technologies k.

(3) No system of technology k can be bought before that technology becomes
available:

bkt = 0; t < ½ k ; for all k:

(4) All prices and the numbers of systems bought and used must be non-negative.

(v) The optimization problem

The parameters to be optimized are the city-pair prices pijt and the numbers
of systems of each technology bought and used, bkt and ukt. Putting together the
objective and constraints, the problem is

maximize
p;u;b

NPV (4.7)

subject to
X

i;j 2 I
Dijt 6

X

k 2 K

µkukt; t = 1; : : : ; T

ukt 6 bkt + uk;t¡1; k 2 K; t = 2; : : : ; T

bkt = 0; t < ½ k ; k 2 K; t = 1; : : : ; T

pijt > 0; (i; j) 2 I; t = 1; : : : ; T

uk1 = bk1; k 2 K

bkt > 0; k 2 K; t = 1; : : : ; T

ukt > 0; k 2 K; t = 1; : : : ; T

where NPV is de ned by (4.6), p = fpijtg, u = fuktg and b = fbktg.

(b) Representing technology innovations

Optical transport networks are characterized by frequent, substantial increases in
capacity. To parameterize this phenomenon in the model, we assume that each new
WDM technology has capacity · times larger than that of its immediate predecessor,
i.e.

µk = · µk¡1; (4.8)

where · > 1.
To characterize the e¬ects of a new technology on costs, d (`d’ for `disruptiveness’)

is de ned as the reduction in initial investment cost per unit of capacity in technology
k compared with technology k ¡ 1, so that the per-unit investment costs satisfy

Ik½ k

µk

= (1 ¡ d)
Ik¡1;½ k ¡ 1

µk¡1

: (4.9)
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For example, d = 0:2 means that the per-unit cost of a new technology is 80% of
the per-unit cost of the preceding technology. The larger the value of d, the greater
reduction in the per-unit investment cost, i.e. the greater the disruptiveness. For
simplicity, d is assumed to be constant; in a more complex model, d could depend
on time and/or technology.

Finally, we assume that, once a technology has become available, its investment
cost decreases by the (constant) factor ² , i.e.

Ik;t+ 1 = ² Ikt for t > ½ k : (4.10)

(c) Optimizing the model

Because the price variables pijt appear nonlinearly in the formulation of demand
(see (4.1)), the optimization problem (4.7) has a nonlinear objective function and
nonlinear constraints. Furthermore, the numbers of systems bought and used must
be integers. Unfortunately, there are no currently available algorithms, let alone
general-purpose software, for solving a general mixed-integer nonlinear optimization
problem.

Our approach to solving (4.7) is a sequential continuous relaxation technique, an
approach widely used in optimization (see, for example, Fletcher 1987, Gill et al .
1981). For details of its application to our model, see Lanning et al . (2000).

5. Analysis and results

The purpose of developing this model is to explore, to low order, the e¬ects of both
price elasticity and changes in per-unit technology costs.

We give results for a speci c problem: a hypothetical  ve-city ring network in
which the distance between adjacent cities is 500 miles. Thus N is 5, there are 10
city pairs, and L, the length of  bre needed to connect the cities, is 2500. Demand
is scaled by assuming an initial demand of 10 OC-1 between each city pair, with
an initial monthly price of $18 000 per OC-1; these values determine the coe¯ cients
Aijt in equation (4.1).

Fibre maintenance costs are estimated using the Hat eld model (HAI Consulting
Inc. 1998). The life of a conduit is assumed to be 30 years, with eight-year depre-
ciation of the  bre cables. Consequently, the amortized yearly investment cost of
laying a conduit and installing a  bre cable ranges from $172 to $516 per mile per
 bre, depending on cable size, which ranges between 24 and 96  bres per cable. It
can also be derived from the Hat eld model that the ratio of amortized investment
expense to recurring supporting expense is around 1=0:3 º 3:33. By applying this
ratio, yearly  bre maintenance expense is estimated to be between $52 and $155 per
mile per  bre. For simplicity, we use the constant value mkt = $100 per mile per
 bre in equation (4.3) for all technologies and time periods.

Each technology is represented by the data rate of ADM and the number of wave-
lengths of WDM. We assume the technology available in period 1 is OC 48-40, and
the next  ve technologies are OC 48-80, OC 192-40, OC 192-80, OC 768-40 and
OC 768-80, each entering in the subsequent time period. Therefore, the factor ·
de ning the growth in capacity in (4.8) is taken as 2, meaning that each new tech-
nology has double the capacity of the preceding one. While there can be other paths
of technology evolution, our result is more sensitive to d, the reduction of investment
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Figure 2. Technology acquisitions over time.

cost per unit of capacity, than to · , the size of capacity increment of di¬erent tech-
nologies. It has been estimated that, in transport networks, the saving in unit cost
from the next-generation technology is ca. 28% (Crowe 2000). For this reason, we set
d to 30% and vary it by §10%, and examine how the results change.

In period 1, the investment cost per OC-1 is assumed to be $2500, so that the
per-system cost for technology 1, I11, is $4 800 000. Thereafter, the per-system cost
Ikt in (4.3) is de ned by (4.8), (4.9) and (4.10). For a  xed technology, the yearly
reduction of investment cost should be smaller than the saving from a next-generation
technology (30%). Therefore, the parameter ² specifying the per-period reduction in
investment cost for a  xed technology in (4.10) is taken as 0:9, i.e. the investment
cost for a  xed technology decreases by 10% in each period. The discount rate » ,
used in (4.6), is 0:86. In computing the terminal value (see (4.5)), we take g 1 = 0:07
and f = 7.

The generation and number of technology acquisitions in periods 1 through 6 are
shown in  gure 2, where the integer inside the symbol for each technology indicates
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(iii)
(ii)

(ii)

(i)

(i)

Figure 3. Prices over time. The three values of elasticity are (i) 1:3, (ii) 1:7 and (iii) 2:1.

the number of such systems purchased in the given time period. To avoid dependence
on the de nition of terminal value, the variables have been optimized over a longer
time horizon so that the results for periods 1 through 6 do not change as the time
horizon increases; for the results given, this corresponds to T = 10.

The results in  gure 2 correspond to three values of the disruptiveness factor,
d = 0:2, d = 0:3 and d = 0:4 (see (4.9)). A larger value of d means more steeply
dropping per-unit technology costs, so that (for example) d = 0:3 means a 30%
per-unit cost reduction for each new technology.

For each value of d, technology acquisitions are shown for three values of elastic-
ity, ranging from mildly elastic (E = 1:3) to highly elastic (E = 2:1). For a  xed
disruptiveness,  gure 2 shows the following.

(i) Larger elasticity implies more innovative technology acquisitions, i.e. new tech-
nologies tend to be acquired sooner.

(ii) The number of systems acquired increases with larger elasticity.

(iii) Technology acquisitions occur more frequently as elasticity increases. With an
elasticity of 1:3, even with high disruptiveness (d = 0:4), only one system is
acquired in any given period.

Figure 2 also allows us to compare the e¬ects of disruptiveness on technology acqui-
sitions. For a  xed elasticity, higher disruptiveness, which means a greater reduction
in per-unit cost over time, leads to acquisition of less equipment in the early time
periods and more in the later time periods. In period 1, with elasticity 2:1, 48 sys-
tems are acquired when d is 0:2, 31 systems when d is 0:3, and 22 systems when
d is 0:4. In period 6, by contrast, eight systems (seven of technology 6, one of tech-
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nology 3) are acquired when d is 0:2, 25 systems (all of technology 6) when d is 0:3,
and 101 systems (all of technology 6) when d is 0:4.

Our model provides insight into the e¬ects of elasticity and disruptiveness on
the optimal pricing scenario. Figure 3 shows the prices over time for two values of
disruptiveness (d = 0:2 and d = 0:4) and three values of elasticity (1:3, 1:7 and 2:1).

An obvious conclusion that can be drawn from  gure 3 is that, for a  xed dis-
ruptiveness, prices are uniformly lower across all time periods as elasticity increases.
This result re®ects the observations of x 3 that higher elasticity implies higher revenue
from price reductions.

A second implication of  gure 3 is that, for a given elasticity, a larger disruptiveness
means a higher initial price but a lower price in later periods (period 3 and after).

Finally, our model reveals the relationship between elasticity, disruptiveness and
the growth in capacity of the network over time. Figure 4 shows capacity (on a log
scale) as a function of time for the same two values of disruptiveness (d = 0:2 and
d = 0:4) and three values of elasticity (1:3, 1:7 and 2:1) shown in  gure 2. Observe
that, for a given elasticity, the initial capacity is lower for larger disruptiveness, but
that capacity thereafter grows much more rapidly for the larger disruptiveness. Sim-
ilarly, for a given disruptiveness, a larger value of elasticity implies a larger capacity
in every time period. For the largest values of elasticity (E = 2:1) and disruptiveness
(d = 0:4), capacity increases by a factor of more than 200 during the six time periods
shown.

6. Conclusions

We have developed a model to analyse the optimal growth of optical transport net-
works. Unlike previous planning models (Freidenfelds 1981) that view future demand
as externally given, we allow demand to be determined by prices via a constant-
elasticity demand function; prices are then optimized jointly with capacity invest-
ment decisions. The formulation of a constant-elasticity demand function represents
current communications technology trends reasonably well. Our results show that
frequent deployment of newer systems is optimal in an environment of high elasticity
and large reductions in the per-unit cost of technology.

These results run counter to traditional voice network carrier practice, where
expansion of networks is slow and the timing of investments is irregular. The di¬er-
ence can be attributed to inclusion of high elasticity and disruptiveness, which are
positively correlated with aggressive deployment of newer systems.

These results demonstrate the range over which frequent investments make sense
and how the rate of investment may accelerate or decelerate depending on the level
of technology disruptiveness. With appropriate assumptions, we can map forecasts
of capacity growth to a combination of technology disruptiveness and elasticity. The
average exponential capacity growth rates that we estimate range between 30 and
90% per year. While these average growth rates are high, they pale in comparison
with the 200{300% growth rates sometimes reported by industry consultants and
analysts. Forecasts of higher rates of growth may be justi ed by other factors. One
possible factor is that regulation has retarded investment. Less regulation or the
entry of unregulated  rms a¬ords the industry a one-time adjustment to the optimal
expansion path, which is re®ected as a period of growth at the highest rate that
 rms can accommodate and that the market can absorb. Further work is needed to
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Figure 4. Capacity (shown on a log scale) over time. The three values of elasticity are
(i) 1:3, (ii) 1:7 and (iii) 2:1.

extend this method from a monopoly or cooperative solution to more competitive
solutions.

Future modelling work will move in several directions. First, random factors can
be included to account for uncertainties in both future demand and technology envi-
ronments. Another direction is to introduce competitive carriers for which a Cournot
capacity choice model (Herk 1993) is used to replace the current maximization of
NPV.
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